Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 888: 164142, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37182769

RESUMO

Global warming leads to more frequent and intense heatwaves, putting urban populations at greater risk. Previous related studies considered only surface air temperature or one or two Shared Socioeconomic Pathways (SSPs) and were limited to specific regions. Moreover, no research focused on heatwave exposure in highly-populated global megacities facing severe threats. This study is the first to project future population exposure to heatwaves in 83 global megacities by 2100 using fine-resolution data, suitable indices reflecting human comfort in heatwaves by incorporating temperature and humidity, and a future population exposure projection and analysis framework. The results show that (1) the global frequency of extreme heatwave events and average change rate in each megacity sequentially increase from SSP1-2.6 to SSP5-8.5, and the change rate is generally larger in megacities in the Southern Hemisphere; (2) the increases in heatwave exposure are greatest under SSP370, and the change rates are generally larger for megacities in Southern Asia; (3) there is a high degree of inequality (Gini of 0.6 to 0.63) in future heatwave exposure globally, with the highest inequality under SSP5-8.5 and the lowest under SSP3-7.0; (4) the average exposure, increase rate, and change are highest in low-income megacities and lowest in high-income megacities. The distribution of exposure is the most balanced in middle-income megacities and the least balanced in high-income megacities; and (5) population growth contributes more to the change in exposure than total warming in high-income megacities under SSP1-2.6, and total urban warming contributes much more than population growth in all other cases. Every effort should be made to avoid the SSP3-7.0 scenario and pursue sustainable and rational urban economic development. Mumbai, Manila, Kolkata, and Jakarta warrant particular attention due to their rapid exposure growth. Additionally, policymakers and urban planners must focus on improving sustainable development planning for megacities in southern Asia and low-income megacities.


Assuntos
Aquecimento Global , Temperatura Alta , Humanos , Cidades , Filipinas , População Urbana
2.
Sci Total Environ ; 836: 155607, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35500708

RESUMO

Understanding of how changes in diverse human activities and climate contribute to water quality dynamics is crucial for sustainable water environment management especially in the arid and semi-arid regions. This study conducted a comprehensive estimation of the surface water quality change in the Yellow River basin during 2003-2017 and its responses to varied pollution sources and water volumes under socioeconomic and environmental influences. Basin-wide measurements of chemical oxygen demand (COD), ammonium nitrogen (NH+4-N) and dissolved oxygen (DO) concentrations were used in trend detection. Annual anthropogenic (covering six sectors) and natural (sediment-induced, flow-in from the upstream and stored last year) pollution sources and water components (inflow, natural runoff, water consumption, reservoir storage and evaporation) were compiled for each sub-basin. Bottom-up hierarchical analysis was then performed to differentiate individual contributions. Results showed significant decreasing trends in COD and NH+4-N concentrations and increasing trends in DO concentrations. The middle reaches that traverse the Loess Plateau however remained severely polluted with 11.3-39.0% inferior to level III in 2017. The pollutant load played major positive contributions that gradually increased from upper to lower reaches. Declines in urban, rural and industrial pollution discharges following environmental investments and rural depopulation contributed the most: 78-96% for COD and 55-100% for NH+4-N. The total surface water volume had dilution effects in the upper and middle reaches (3-28%) and condensing effects in the lower reaches (2-37%). Precipitation and vegetation dynamics contributed slightly. The primary unfavorable factors were the growing agricultural pollution discharges and water consumption in the upper and middle reaches that also threatened the lower reaches. This study is expected to provide in-depth insights for the systematic response of regional water quality to combined human interventions and references for water quality management in other arid and semi-arid river basins worldwide.


Assuntos
Rios , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Atividades Humanas , Humanos , Nitrogênio/análise , Poluentes Químicos da Água/análise , Qualidade da Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-31212953

RESUMO

Urban forms and functions have critical impacts on urban heat islands (UHIs). The concept of a "local climate zone" (LCZ) provides a standard and objective protocol for characterizing urban forms and functions, which has been used to link urban settings with UHIs. However, only a few structure types and surface cover properties are included under the same climate background or only one or two time scales are considered with a high spatial resolution. This study assesses multi-temporal land surface temperature (LST) characteristics across 18 different LCZ types in Beijing, China, from July 2017 to June 2018. A geographic information system-based method is employed to classify LCZs based on five morphological and coverage indicators derived from a city street map and Landsat images, and a spatiotemporal fusion model is adopted to generate hourly 100-m LSTs by blending Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and FengYun-2F LSTs. Then, annual and diurnal cycle parameters and heat island and cool island (HI or CI) frequency are linked to LCZs at annual, seasonal, monthly, and diurnal scales. Results indicate that: (1) the warmest zones are compact and mid and low-rise built-up areas, while the coolest zones are water and vegetated types; (2) compact and open high-rise built-up areas and vegetated types have seasonal thermal patterns but with different causes; (3) diurnal temperature ranges are the highest for compact and large low-rise settings but the lowest for water and dense or scattered trees; and (4) HIs are the most frequent summertime and daytime events, while CIs occur primarily during winter days, making them more or less frequent for open or compact and high- or low-rise built-up areas. Overall, the distinguishable LSTs or UHIs between LCZs are closely associated with the structure and coverage properties. Factors such as geolocation, climate, and layout also interfere with the thermal behavior. This study provides comprehensive information on how different urban forms and functions are related to LST variations at different time scales, which supports urban thermal regulation through urban design.


Assuntos
Mudança Climática/estatística & dados numéricos , Temperatura Baixa , Monitoramento Ambiental/métodos , Temperatura Alta , Pequim , Cidades/estatística & dados numéricos , Imagens de Satélites , Estações do Ano , Propriedades de Superfície
4.
Environ Sci Technol ; 48(20): 12134-40, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25222374

RESUMO

The subsurface urban heat island (SubUHI) is one part of the overall UHI specifying the relative warmth of urban ground temperatures against the rural background. To combat the challenge on measuring extensive underground temperatures with in situ instruments, we utilized satellite-based moderate-resolution imaging spectroradiometer data to reconstruct the subsurface thermal field over the Beijing metropolis through a three-time-scale model. The results show the SubUHI's high spatial heterogeneity. Within the depths shallower than 0.5 m, the SubUHI dominates along the depth profiles and analyses imply the moments for the SubUHI intensity reaching first and second extremes during a diurnal temperature cycle are delayed about 3.25 and 1.97 h per 0.1 m, respectively. At depths shallower than 0.05 m in particular, there is a subsurface urban cool island (UCI) in spring daytime, mainly owing to the surface UCI that occurs in this period. At depths between 0.5 and 10 m, the time for the SubUHI intensity getting to its extremes during an annual temperature cycle is lagged 26.2 days per meter. Within these depths, the SubUHI prevails without exception, with an average intensity of 4.3 K, varying from 3.2 to 5.3 K.


Assuntos
Cidades/estatística & dados numéricos , Temperatura Alta , Modelos Teóricos , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...